
django-ticketoffice Documentation
Release 0.2

Benoît Bryon

August 01, 2014

Contents

1 Example 3

2 Project status 5

3 Resources 7

4 Contents 9
4.1 Install . 9
4.2 Configure . 10
4.3 About django-ticketoffice . 10
4.4 Contributing . 13

5 Indices and tables 15

i

ii

django-ticketoffice Documentation, Release 0.2

django-ticketoffice provides one-shot authentication (a.k.a. temporary credentials) utilities for Django. It lets you
create and manage tickets that allow users to perform one action on the website. As an example, Django could use it
for the “password reset” action, where users authenticate using a temporary token.

Contents 1

django-ticketoffice Documentation, Release 0.2

2 Contents

CHAPTER 1

Example

Restrict some URL to guests with valid invitation tickets:

from django.conf.urls import patterns, url
from django_ticketoffice.decorators import invitation_required, stamp_invitation

@invitation_required(place=u’louvre’, purpose=u’visit’)
@stamp_invitation # Mark invitation as used right **after** view execution.
def visit_louvre(request):

ticket = request.cache[’invitation’] # Set by ‘invitation_required‘.
return u’Welcome to the Louvre museum {guest}’.format(

guest=ticket.data[’first_name’])

urlpatterns = patterns(’’, url(’^louvre$’, visit_louvre, name=’louvre’))

Create and deliver tickets for this resource:

from django.utils.timezone import now
from django_ticketoffice.models import Ticket

ticket = Ticket(place=u’louvre’, purpose=u’visit’)
ticket.set_password(u’I love Paris’) # Encrypted in database.
ticket.expiry_datetime = now() + timedelta(days=5) # Optional.
ticket.data = {’first_name’: u’Léonard’} # Optional.
ticket.save()

credentials = {’uuid’: ticket.uuid, ’password’: u’I love Paris’}
visit_url = reverse(’louvre’) + ’?’ + urlencode(credentials)

django-ticketoffice focuses on authentication. It does not send invitation emails. You may check django-mail-factory
about sending emails.

3

https://pypi.python.org/pypi/django-mail-factory

django-ticketoffice Documentation, Release 0.2

4 Chapter 1. Example

CHAPTER 2

Project status

django-ticketoffice is, at the moment, a proof-of-concept: it delivers basic features in order to create tickets and to
use them in views. It works (you can use it), but it may lack some features (ideas are welcome), and it may change
(improve) quite a bit. That said, maintainers will take care of release notes and migrations.

See also vision, roadmap and alternatives to get a better overview of project status.

5

https://django-ticketoffice.readthedocs.org/en/latest/about/vision.html
https://github.com/novapost/django-ticketoffice/issues/milestones
https://django-ticketoffice.readthedocs.org/en/latest/about/alternatives.html

django-ticketoffice Documentation, Release 0.2

6 Chapter 2. Project status

CHAPTER 3

Resources

• Documentation: https://django-ticketoffice.readthedocs.org

• PyPI page: http://pypi.python.org/pypi/django-ticketoffice

• Code repository: https://github.com/novapost/django-ticketoffice

• Bugtracker: https://github.com/novapost/django-ticketoffice/issues

• Continuous integration: https://travis-ci.org/novapost/django-ticketoffice

• Roadmap: https://github.com/novapost/django-ticketoffice/issues/milestones

7

https://django-ticketoffice.readthedocs.org
http://pypi.python.org/pypi/django-ticketoffice
https://github.com/novapost/django-ticketoffice
https://github.com/novapost/django-ticketoffice/issues
https://travis-ci.org/novapost/django-ticketoffice
https://github.com/novapost/django-ticketoffice/issues/milestones

django-ticketoffice Documentation, Release 0.2

8 Chapter 3. Resources

CHAPTER 4

Contents

4.1 Install

django-ticketoffice is open-source software, published under BSD license. See License for details.

If you want to install a development environment, you should go to Contributing documentation.

4.1.1 Prerequisites

• Python 1 ==2.7.

4.1.2 As a library

In most cases, you will use django-ticketoffice as a dependency of your Django project. In such a case, you should add
django-ticketoffice in your main project’s requirements. Typically in setup.py:

from setuptools import setup

setup(
install_requires=[

’django-ticketoffice’,
#...

]
...

)

Then when you install your main project with your favorite package manager (like pip 2), django-ticketoffice will
automatically be installed.

4.1.3 Standalone

You can install django-ticketoffice with your favorite Python package manager. As an example with pip 2:

pip install django-ticketoffice

1 http://python.org
2 https://pypi.python.org/pypi/pip/

9

http://python.org
https://pypi.python.org/pypi/pip/
https://pypi.python.org/pypi/pip/
http://python.org
https://pypi.python.org/pypi/pip/

django-ticketoffice Documentation, Release 0.2

4.1.4 Check

Check django-ticketoffice has been installed:

python -c "import django_ticketoffice;print(django_ticketoffice.__version__)"

You should get django_ticketoffice‘s version.

References

4.2 Configure

Once django-ticketoffice has been installed, let’s configure it.

4.2.1 INSTALLED_APPS

Add "django-ticketoffice" to INSTALLED_APPS in settings.

4.2.2 TICKETOFFICE_PASSWORD_GENERATOR

TICKETOFFICE_PASSWORD_GENERATOR is a tuple in the form (path, args, kwargs), where:

• path is the Python path to import a callable (the password generation function)

• args is the list of positional arguments for the callable.

• kwargs is a dictionary of keyword arguments for the callable.

Default is:

(
’django_ticketoffice.utils.random_password’,
[],
{’min_length’: 12, ’max_length’: 20}

)

4.3 About django-ticketoffice

This section is about the django-ticketoffice project itself.

4.3.1 Vision

django-ticketoffice helps developers to implement features using the “one-shot authentication” (or “temporary creden-
tials”) pattern.

As an example Django uses temporary credentials for its “password reset” feature:

• a token is randomly generated

• the user receives it by mail

• the user shows the token to set a new password

10 Chapter 4. Contents

django-ticketoffice Documentation, Release 0.2

• once the action (password reset) has been done, the authorization token is deactivated

• the invitation has a limited lifetime.

Developers often face similar situations, where they need to grant users some permissions for a limited scope and
limited time.

As an example, there are many websites sending a code to user’s phone number. Then the user has to confirm some
secured operation with that code.

django-ticketoffice provides tools for developers to implement such features. It provides tickets and authentication
features.

django-ticketoffice is meant to be flexible, so that it can fit many situations. It does focus on authentication.

At core, django-ticketoffice is not an all-in-one solution implementing the full workflow. As an example it does not
include email sending, at the moment. That said, it may provide some generic views that do so, as helpers, if some
patterns emerge.

django-ticketoffice primary purpose is to provide a smart API to Django developers. It means that high-level API
(Django-side) should be stable ; whereas internal implementation of the “temporary credentials” pattern may change,
or be configurable. As an example, tickets could be managed in Django‘s main database, or in some external service
(REST API? Kerberos?).

Since django-ticketoffice is built on top of Django, it may provide a web API to manage tickets. It means it could itself
be used as “external one-shot authentication service”, i.e. it could be used either temporary credentials client or server.
That said, priority is the client feature, the server feature would be a bonus.

4.3.2 Alternatives and related projects

This document presents other projects that provide similar or complementary functionalities. It focuses on differences
or relationships with django-ticketoffice.

Kerberos

Kerberos 3 may be a candidate to implement internal one-shot authentication. There are some projects around Kerberos
and Django: see https://pypi.python.org/pypi?%3Aaction=search&term=django%20kerberos

S/KEY

S/KEY 4 may be an option to generate and validate passwords.

References

4.3.3 License

Copyright (c) 2014, Benoît Bryon. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

3 https://en.wikipedia.org/wiki/Kerberos_%28protocol%29
4 https://en.wikipedia.org/wiki/S/Key

4.3. About django-ticketoffice 11

https://en.wikipedia.org/wiki/Kerberos_%28protocol%29
https://pypi.python.org/pypi?%3Aaction=search&term=django%20kerberos
https://en.wikipedia.org/wiki/S/Key
https://en.wikipedia.org/wiki/Kerberos_%28protocol%29
https://en.wikipedia.org/wiki/S/Key

django-ticketoffice Documentation, Release 0.2

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of django-ticketoffice nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

4.3.4 Authors & contributors

See https://github.com/novapost/django-ticketoffice/contributors for details.

4.3.5 Changelog

This document describes changes between each past release. For information about future releases, check milestones
5 and Vision.

0.2 (2014-08-01)

Small improvements around UUID format.

• Feature #4 - In invitation_required decorator, UUID value submitted by user is validated via
TicketAuthenticationForm. The value stored in session also gets more consistent.

0.1.1 (2014-07-10)

Documentation bugfix.

• Bug #19 - Documentation builds on readthedocs.org (was failing).

0.1 (2014-07-10)

Initial release.

• Introduced Ticket model.

• Introduced stamp_invitation and invitation_required decorators.
5 https://github.com/novapost/django-ticketoffice/issues/milestones

12 Chapter 4. Contents

https://github.com/novapost/django-ticketoffice/contributors
https://github.com/novapost/django-ticketoffice/issues/milestones
https://github.com/novapost/django-ticketoffice/issues/milestones

django-ticketoffice Documentation, Release 0.2

Notes & references

4.4 Contributing

This document provides guidelines for people who want to contribute to django-ticketoffice.

4.4.1 Create tickets

Please use the bugtracker 6 before starting some work:

• check if the bug or feature request has already been filed. It may have been answered too!

• else create a new ticket.

• if you plan to contribute, tell us, so that we are given an opportunity to give feedback as soon as possible.

• Then, in your commit messages, reference the ticket with some refs #TICKET-ID syntax.

4.4.2 Use topic branches

• Work in branches.

• Prefix your branch with the ticket ID corresponding to the issue. As an example, if you are working on ticket
#23 which is about contribute documentation, name your branch like 23-contribute-doc.

• If you work in a development branch and want to refresh it with changes from master, please rebase 7 or merge-
based rebase 8, i.e. do not merge master.

4.4.3 Fork, clone

Clone django-ticketoffice repository (adapt to use your own fork):

git clone git@github.com:novapost/django-ticketoffice.git
cd django-ticketoffice/

4.4.4 Usual actions

The Makefile is the reference card for usual actions in development environment:

• Install development toolkit with pip 9: make develop.

• Run tests with tox 10: make test.

• Build documentation: make documentation.

• Release project with zest.releaser 11: make release.

• Cleanup local repository: make clean, make distclean and make maintainer-clean.

See also make help.
6 https://github.com/novapost/django-ticketoffice/issues
7 http://git-scm.com/book/en/Git-Branching-Rebasing
8 http://tech.novapost.fr/psycho-rebasing-en.html
9 https://pypi.python.org/pypi/pip/

10 http://tox.testrun.org
11 https://pypi.python.org/pypi/zest.releaser/

4.4. Contributing 13

https://github.com/novapost/django-ticketoffice/issues
http://git-scm.com/book/en/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
http://tech.novapost.fr/psycho-rebasing-en.html
https://pypi.python.org/pypi/pip/
http://tox.testrun.org
https://pypi.python.org/pypi/zest.releaser/
https://github.com/novapost/django-ticketoffice/issues
http://git-scm.com/book/en/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
https://pypi.python.org/pypi/pip/
http://tox.testrun.org
https://pypi.python.org/pypi/zest.releaser/

django-ticketoffice Documentation, Release 0.2

Notes & references

14 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

	Example
	Project status
	Resources
	Contents
	Install
	Configure
	About django-ticketoffice
	Contributing

	Indices and tables

